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ABSTRACT: 

As the Internet becomes increasingly integral to our communications infrastructure, the issue of slow 

convergence in routing protocols following network failures becomes more pressing. The main goal 

of this paper is to address the need for fast recovery from link and node failures using a new recovery 

scheme called Multiple Routing Configuration (MRC). 

MRC is designed to be connectionless, relying solely on destination-based hop-by-hop forwarding. It 

operates by storing additional routing information within the routers, enabling them to immediately 

forward packets over an alternative output link as soon as a failure is detected, without needing to wait 

for full network convergence. 

Additionally, we propose a method for using estimates of traffic demands within the network to 

optimize the distribution of the recovered traffic. By doing so, we aim to reduce the likelihood of 

congestion when MRC is activated, ensuring more efficient network operation during failure recovery. 

 

INTRODUCTION: 

In recent years, the Internet has evolved from a specialized network into a widely used platform for 

everyday communication services. As a result, the demand for reliability and availability has increased 

significantly. A disruption in a critical network link can impact a large number of phone calls or TCP 

connections, leading to serious consequences. Ensuring rapid recovery from failures has always been 

a fundamental design objective of the Internet. 

IP networks are inherently resilient because Interior Gateway Protocols (IGPs), such as OSPF, update 

routing information when the network topology changes due to a failure. This process, known as re-

convergence, requires distributing the updated link state to all routers in the network domain. Each 

router then recalculates its routing table based on the new topology. However, this process is time-

consuming, and failures typically cause a temporary period of routing instability. Since most network 

failures are short-lived, frequent re-convergence can lead to route flapping and further instability. 

The IGP convergence process is inherently slow because it is reactive and affects all routers in the 

domain. To address this limitation, we introduce Multiple Routing Configurations (MRC), a proactive 

and localized failure recovery mechanism that restores network functionality within milliseconds. 

MRC enables immediate packet forwarding through pre-configured alternative next-hops upon 

detecting a failure. This allows the normal IP convergence process to be delayed, activating only when 

necessary to address non-transient failures. Since MRC does not require global re-routing, fast failure 

detection methods, such as fast hellos or hardware alerts, can be used without compromising network 

stability.MRC ensures recovery from any single link or node failure, which accounts for most network 

disruptions. It does not rely on identifying the specific cause of failure, whether it is a faulty link or a 

failed router. The core concept of MRC is to generate a set of backup network configurations based on 

the network topology and associated link weights. These configurations are designed so that when a 

failure occurs, the detecting node can safely reroute traffic through an alternate link without requiring 

immediate global re-convergence. 

MRC assumes the use of shortest-path routing and destination-based hop-by-hop forwarding. 

However, shifting traffic to alternate links may cause congestion and packet loss in certain parts of the 

network. This limits the duration for which the proactive recovery mechanism can be used before the 

global routing protocol is updated, reducing the chances of handling transient failures without a full 

re-convergence. 
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To optimize traffic distribution after a failure, MRC assigns link weights independently in each backup 

configuration. This approach provides flexibility in routing recovered traffic. The specific backup 

configuration used depends on the failure event, allowing for tailored link weight adjustments that 

optimize traffic flow for different failure scenarios. 

 

EXISTING WORK: 

IP networks are inherently resilient, as interior gateway routing protocols like OSPF are designed to 

update forwarding details based on topology changes following a failure. This re-convergence relies 

on the complete dissemination of the updated link state across all routers within the network domain. 

Once the new state data is shared, each router independently computes fresh, valid routing tables. 

However, this network-wide IP re-convergence is a time-intensive procedure, and a link or node failure 

is usually accompanied by a phase of routing instability. A major challenge is that, since most network 

disruptions are brief, excessively rapid initiation of the re-convergence process can result in route 

oscillations and heightened network instability. The IGP convergence mechanism is sluggish because 

it is both reactive and comprehensive—it responds to a failure only after it occurs and requires the 

participation of all routers within the domain 

 

PROPOSED WORK: 

Multiple Routing Configurations (MRC) is a preventive and localized protection technique that 

enables recovery within milliseconds. MRC operates by constructing a limited set of backup routing 

configurations, which are utilized to redirect recovered traffic through alternative paths following a 

failure. These backup configurations differ from the standard routing setup as they assign specific link 

weights to prevent traffic from passing through certain areas of the network. 

It is observed that if all links connected to a node are assigned sufficiently high link weights, traffic 

will be prevented from traversing that node. Consequently, the failure of that node will only impact 

traffic originating from or destined for it. Similarly, to exclude a link (or a group of links) from routing 

participation, an infinite weight is assigned, ensuring that its failure does not affect traffic flow. 

The MRC methodology consists of three main steps. First, a set of backup configurations is generated, 

ensuring that each network component is excluded from packet forwarding in at least one 

configuration. Second, for each backup configuration, a conventional routing protocol like OSPF is 

applied to determine configuration-specific shortest paths and generate forwarding tables for every 

router based on these configurations. The use of a standard routing protocol ensures loop-free 

forwarding within each configuration. By employing a standard shortest path algorithm, each router 

constructs multiple configuration-specific forwarding tables. 

For simplicity, we state that packets are forwarded according to a configuration, meaning they are 

routed based on the corresponding forwarding table. This paper discusses the approach of maintaining 

separate forwarding tables for each configuration, though we anticipate that more optimized solutions 

can be developed for practical implementation. When a router detects that a neighbouring node is no 

longer accessible through one of its interfaces, it does not immediately notify the entire network of the 

connectivity loss. Instead, packets that would have been transmitted through the failed interface are 

designated as belonging to a backup configuration and rerouted via an alternative interface toward 

their destination 

STEP 1: GENERATING BACKUP CONFIGURATIONS 

In this section, we will first outline the essential requirements that must be imposed on the backup 

configurations utilized in MRC. Following this, we will introduce an algorithm designed to 

automatically generate these configurations. This algorithm is typically executed once during the 

network's initial deployment and subsequently whenever a node or link is permanently added or 

removed. 

Configurations Structure: 

MRC configurations are determined by the network topology, which remains consistent across all 

configurations, and the corresponding link weights, which vary between configurations. Formally, the 

network topology is represented as a graph G = (N, A), where N is the set of nodes and A is the set of 

unidirectional links (arcs). 
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To ensure resilience against single failures, the topology graph G must be bi-connected. A 

configuration is defined by this topology graph along with its associated link weight function. 

 
Node 5 is isolated by assigning a high weight to all its connected links, preventing it from forwarding 

transit traffic. Only traffic that is destined for or originating from the isolated node will use these 

restricted links. 

 

ARGUMENTS: 

Graph Definitions and Multiple Routing Configurations (MRC) 

A graph is represented as G = (N, A), where N is the set of nodes and A is the set of directed links 

(arcs). 

 

Key Notations 

• Ci – A graph configuration with link weights specific to configuration i. 

• Si – The set of isolated nodes in configuration Ci. 

• Bi – The backbone of configuration Ci. 

• A(u) – The set of outgoing links from node u. 

• (u, v) – A directed link from node u to node v. 

• pi(u, v) – A shortest path between nodes u and v in Ci. 

• N(p) – The set of nodes on path p. 

• A(p) – The set of links on path p. 

• wi(u, v) – The weight of link (u, v) in configuration Ci. 

• wi(p) – The total weight of all links in path p under configuration Ci. 

• wr – The weight assigned to a restricted link. 

• n – The number of configurations to generate (algorithm input). 

Configuration Definition 

A configuration Ci is an ordered pair (G, wi), where wi is a function that assigns an integer 

weight wi(a) to each link a ∈ A. The function follows the rule: 

wi : A → {1, ..., wmax, wr, ∞}, where: 

• C0 (normal configuration) assigns "normal" weights to all links: w0(a) ∈ {1, ..., wmax}. 

• Ci (backup configurations, i > 0) modifies link weights to prevent certain links and nodes from 

forwarding transit traffic while still ensuring connectivity for active nodes. 

 

Traffic Regulation in Backup Configurations 

To control traffic flow in backup configurations, certain links are assigned high weights: 

• A link a ∈ A is isolated in Ci if wi(a) = ∞. 

• A link a ∈ A is restricted in Ci if wi(a) = wr. 

• Isolated links do not carry any traffic. 

• Restricted links are used to prevent nodes from forwarding traffic. To isolate a node, all its 

attached links must be assigned at least the restricted weight wr. 

• However, a node must not be completely isolated in all configurations to ensure it remains 

reachable. 

The set of isolated nodes in Ci is denoted Si, while the set of non-isolated nodes is Si = N \ Si. 

Node Isolation Condition 

A node u ∈ N is considered isolated in Ci if: 

∀(u,v)∈A,wi(u,v)≥wr 

and at least one link satisfies: 

∃(u,v)∈A,wi(u,v)=wr 
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Rules for Isolated and Restricted Links 

For all links (u, v) ∈ A: 

• If wi(u, v) = wr, then the link connects an isolated node to a non-isolated node:  

 (u∈Si∧ u ∈Si)or(v∈Si∧u∈Si) 

• If wi(u, v) = ∞, then at least one of the nodes must be isolated: 

u ∈ Si or u ∈ Si 

This meansRestricted links always connect an isolated node to a non-isolated node.Isolated links 

either connect an isolated node to a non-isolated node or connect two isolated nodes.A link is 

always isolated in the same configuration as at least one of its attached nodes. 

 

Algorithm: 

The algorithm can be implemented either within a network management system or directly in the 

routers. As long as all routers have a consistent view of the network topology, they will compute the 

same set of backup configurations. 

Description: 

Algorithm 1 iterates through all the nodes in the network topology, attempting to isolate each node 

one at a time. A link is isolated during the same iteration as one of its connected nodes. The algorithm 

terminates when all nodes and links are isolated in exactly one configuration, or when a node that 

cannot be isolated is encountered. 

a) Main Loop: 

Initially, n backup configurations are created as copies of the normal configuration. Two queues are 

initialized: a queue of nodes (Qn) and a queue of links (Qa). The Qn contains all nodes in an arbitrary 

order, while the Qa starts empty but will eventually contain all links in the network. The method starts 

by returning and removing the first item from the node queue. 

When a node u is being isolated in a backup configuration Ci, the algorithm first verifies that isolating 

the node will not disconnect the backbone Bi, according to the connectivity definition. The method 

connected (line 13) tests if each of u's neighbors can still reach each other without passing through u, 

an isolated node, or an isolated link in configuration Ci. If the connectivity test passes, the function 

isolate is called, which tries to find a valid assignment of isolated and restricted links for node u. 

If the isolation is successful, the modified configuration is returned, and the changes are committed 

(line 16). If isolation is not successful, no changes are made to configuration Ci. 

Algorithm 1: Creating backup configurations. 

1 for i ∈ {1 . . . n} do 

2 Ci ←(G,w0) 

3 Si ←∅ 

4 Bi ←Ci 

5 end 

6 Qn ←N 

7 Qa←∅ 

8 i ←1 

9 while Qn 6= ∅do 

10 u ←first (Qn) 

11 j ←i 

12 repeat 

13 if connected(Bi \ ({u},A(u))) then 

14 Ctmp←isolate(Ci, u) 

15 if Ctmp6= null then 

16 Ci ←Ctmp 

17 Si ←Si ∪ {u} 

18 Bi ←Bi \ ({u},A(u)) 

19 i ←(i mod n) + 1 

until u ∈Si 20 or i=j 

if u /∈Si 21 then 
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22 Give up and abort 

23 end 

If node u is successfully isolated, the algorithm proceeds to isolate the next node. If isolation of u fails 

in one configuration, the algorithm continues trying to isolate u across all n configurations (line 20). 

If u cannot be isolated in any configuration after all attempts, the algorithm terminates with an 

unsuccessful result (line 22), indicating that a valid set of configurations with cardinality n cannot be 

built. 

b) Isolating Links: 

In addition to isolating node u, the algorithm attempts to isolate as many of its attached links as 

possible. It goes through the links A(u) attached to u (lines 2-3 in function isolate). An important 

invariant in the algorithm is that, at line 1, all links in Qa are attached to node u. The node v, which is 

at the other end of each link, may or may not be isolated in any given configuration (line 4). 

This step ensures that the isolating of links is synchronized with the node isolation process, maintaining 

network connectivity where necessary and ensuring no invalid configurations are created. 

 

Output: 

We demonstrate that the successful execution of Algorithm 1 results in a complete set of valid backup 

configurations. 

Proposition: 

If Algorithm 1 terminates successfully, the generated backup configurations will adhere to the 

conditions (2) and (3). 

Proof: 

Links are assigned weights wr (restricted) or ∞ (isolated) only during the isolation of one of their 

attached nodes, ensuring that condition (3) is met. For restricted links, condition (2) requires that only 

one of the attached nodes is isolated. This invariant is maintained in line 7 in the isolate function, 

where it is specified that if a node attached to a restricted link is isolated, the link itself must also be 

isolated. Therefore, it is impossible to isolate two neighbouring nodes without also isolating their 

connecting link. 

Termination: 

The algorithm iterates through all nodes, attempting to isolate each in one of the backup configurations. 

It will always terminate, either with a successful result or without success. If a node cannot be isolated 

in any configuration, the algorithm terminates unsuccessfully. However, the algorithm is designed so 

that any bi-connected topology will always terminate successfully, provided the number of 

configurations allowed is sufficiently high. 

STEP 2: LOCAL FORWARDING PROCESS: 

Given a sufficiently large n, the algorithm will generate a complete set of valid backup configurations. 

Let C(u) represent the backup configuration where node u is isolated, i.e., C(u) = Ci ⇔ u ∈ Si. 

Similarly, let C(u, v) denote the backup configuration where the link (u, v) is isolated, i.e., C(u, v) = 

Ci ⇔wi(u, v) = ∞. Assuming that d is the destination (egress) in the local network domain, we can 

analyze two cases based on the value of v: 

1. Case 1: If v ≠ d:In this case, forwarding can be done in configuration C(v), where both node 

v and the link (u, v) are avoided. 

2. Case 2: If v = d:When v is the destination, the challenge is to handle the failure of the link (u, 

v) while ensuring that node v is still operational. The strategy is to forward the packet to v via 

a path that bypasses the failed link (u, v). 

Additionally, any packets that have already changed configurations (i.e., their configuration ID is 

different from the one used in C₀) and encounter a failed component on their forwarding path must be 

discarded. This prevents packet loops, even if node d itself fails. 

Proposition: 

Node u selects configuration Ci such that v ∉N(pi(u, d)), if v ≠ d. 

Proof: 

Node u selects C(v) in step 2. Since node v is isolated in C(v), it will not appear in the shortest path 

pi(u, d), as per the conditions outlined in the proposition above. 
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PERFORMANCE EVALUATION: 

MRC requires routers to store additional routing configurations, and the amount of state required is 

directly tied to the number of backup configurations. Since routing in a backup configuration is 

restricted, MRC may provide backup paths that are longer than the optimal paths. These longer paths 

can increase the overall network load and end-to-end delay. 

In contrast, full, global IGP re-convergence recalculates the shortest paths in the network after the 

failed component is removed. We use this global re-convergence performance as a benchmark to assess 

how closely MRC can match it. It is important to note that MRC achieves its performance immediately 

after detecting a failure, whereas IP re-convergence can take several seconds to complete. 

 

CONCLUSION: 

We have introduced Multiple Routing Configurations (MRC) as a method for achieving rapid recovery 

in IP networks. MRC enables routers to use preconfigured backup routing configurations, allowing 

them to reroute traffic without relying on the failed component. It ensures recovery from any single 

node or link failure in a bi-connected network. 

By precomputing backup configurations and relying solely on locally available information, MRC 

responds immediately upon detecting a failure. It does not require identifying whether the failure is 

due to a node or link disruption, as it applies a structured link weight assignment to manage traffic 

redirection. 

The effectiveness of MRC has been evaluated through simulations, demonstrating that it provides fast 

recovery with minimal impact on network performance. 
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