
Fuzzy Systems and Soft Computing

ISSN : 1819-4362

IMPLEMENTATION OF MULTIPLE ROUTING CONFIGURATIONS FOR FAST

RECOVERY IN IP NETWORKS

S. N. Santhalakshmi (HOD/BCA), Department of Computer Applications, Nandha Arts and

Science College (Autonomous), Erode-52.

Dr. S. V. Elangovan (HOD/CHEMISTRY) Department of Chemistry, Nandha Arts and Science

College (Autonomous), Erode-52

ABSTRACT:

As the Internet becomes increasingly integral to our communications infrastructure, the issue of slow

convergence in routing protocols following network failures becomes more pressing. The main goal

of this paper is to address the need for fast recovery from link and node failures using a new recovery

scheme called Multiple Routing Configuration (MRC).

MRC is designed to be connectionless, relying solely on destination-based hop-by-hop forwarding. It

operates by storing additional routing information within the routers, enabling them to immediately

forward packets over an alternative output link as soon as a failure is detected, without needing to wait

for full network convergence.

Additionally, we propose a method for using estimates of traffic demands within the network to

optimize the distribution of the recovered traffic. By doing so, we aim to reduce the likelihood of

congestion when MRC is activated, ensuring more efficient network operation during failure recovery.

INTRODUCTION:

In recent years, the Internet has evolved from a specialized network into a widely used platform for

everyday communication services. As a result, the demand for reliability and availability has increased

significantly. A disruption in a critical network link can impact a large number of phone calls or TCP

connections, leading to serious consequences. Ensuring rapid recovery from failures has always been

a fundamental design objective of the Internet.

IP networks are inherently resilient because Interior Gateway Protocols (IGPs), such as OSPF, update

routing information when the network topology changes due to a failure. This process, known as re-

convergence, requires distributing the updated link state to all routers in the network domain. Each

router then recalculates its routing table based on the new topology. However, this process is time-

consuming, and failures typically cause a temporary period of routing instability. Since most network

failures are short-lived, frequent re-convergence can lead to route flapping and further instability.

The IGP convergence process is inherently slow because it is reactive and affects all routers in the

domain. To address this limitation, we introduce Multiple Routing Configurations (MRC), a proactive

and localized failure recovery mechanism that restores network functionality within milliseconds.

MRC enables immediate packet forwarding through pre-configured alternative next-hops upon

detecting a failure. This allows the normal IP convergence process to be delayed, activating only when

necessary to address non-transient failures. Since MRC does not require global re-routing, fast failure

detection methods, such as fast hellos or hardware alerts, can be used without compromising network

stability.MRC ensures recovery from any single link or node failure, which accounts for most network

disruptions. It does not rely on identifying the specific cause of failure, whether it is a faulty link or a

failed router. The core concept of MRC is to generate a set of backup network configurations based on

the network topology and associated link weights. These configurations are designed so that when a

failure occurs, the detecting node can safely reroute traffic through an alternate link without requiring

immediate global re-convergence.

MRC assumes the use of shortest-path routing and destination-based hop-by-hop forwarding.

However, shifting traffic to alternate links may cause congestion and packet loss in certain parts of the

network. This limits the duration for which the proactive recovery mechanism can be used before the

global routing protocol is updated, reducing the chances of handling transient failures without a full

re-convergence.

161 Vol.20, No.01(II), January-June: 2025

 161

To optimize traffic distribution after a failure, MRC assigns link weights independently in each backup

configuration. This approach provides flexibility in routing recovered traffic. The specific backup

configuration used depends on the failure event, allowing for tailored link weight adjustments that

optimize traffic flow for different failure scenarios.

EXISTING WORK:

IP networks are inherently resilient, as interior gateway routing protocols like OSPF are designed to

update forwarding details based on topology changes following a failure. This re-convergence relies

on the complete dissemination of the updated link state across all routers within the network domain.

Once the new state data is shared, each router independently computes fresh, valid routing tables.

However, this network-wide IP re-convergence is a time-intensive procedure, and a link or node failure

is usually accompanied by a phase of routing instability. A major challenge is that, since most network

disruptions are brief, excessively rapid initiation of the re-convergence process can result in route

oscillations and heightened network instability. The IGP convergence mechanism is sluggish because

it is both reactive and comprehensive—it responds to a failure only after it occurs and requires the

participation of all routers within the domain

PROPOSED WORK:

Multiple Routing Configurations (MRC) is a preventive and localized protection technique that

enables recovery within milliseconds. MRC operates by constructing a limited set of backup routing

configurations, which are utilized to redirect recovered traffic through alternative paths following a

failure. These backup configurations differ from the standard routing setup as they assign specific link

weights to prevent traffic from passing through certain areas of the network.

It is observed that if all links connected to a node are assigned sufficiently high link weights, traffic

will be prevented from traversing that node. Consequently, the failure of that node will only impact

traffic originating from or destined for it. Similarly, to exclude a link (or a group of links) from routing

participation, an infinite weight is assigned, ensuring that its failure does not affect traffic flow.

The MRC methodology consists of three main steps. First, a set of backup configurations is generated,

ensuring that each network component is excluded from packet forwarding in at least one

configuration. Second, for each backup configuration, a conventional routing protocol like OSPF is

applied to determine configuration-specific shortest paths and generate forwarding tables for every

router based on these configurations. The use of a standard routing protocol ensures loop-free

forwarding within each configuration. By employing a standard shortest path algorithm, each router

constructs multiple configuration-specific forwarding tables.

For simplicity, we state that packets are forwarded according to a configuration, meaning they are

routed based on the corresponding forwarding table. This paper discusses the approach of maintaining

separate forwarding tables for each configuration, though we anticipate that more optimized solutions

can be developed for practical implementation. When a router detects that a neighbouring node is no

longer accessible through one of its interfaces, it does not immediately notify the entire network of the

connectivity loss. Instead, packets that would have been transmitted through the failed interface are

designated as belonging to a backup configuration and rerouted via an alternative interface toward

their destination

STEP 1: GENERATING BACKUP CONFIGURATIONS

In this section, we will first outline the essential requirements that must be imposed on the backup

configurations utilized in MRC. Following this, we will introduce an algorithm designed to

automatically generate these configurations. This algorithm is typically executed once during the

network's initial deployment and subsequently whenever a node or link is permanently added or

removed.

Configurations Structure:

MRC configurations are determined by the network topology, which remains consistent across all

configurations, and the corresponding link weights, which vary between configurations. Formally, the

network topology is represented as a graph G = (N, A), where N is the set of nodes and A is the set of

unidirectional links (arcs).

162 Vol.20, No.01(II), January-June: 2025

 162

To ensure resilience against single failures, the topology graph G must be bi-connected. A

configuration is defined by this topology graph along with its associated link weight function.

Node 5 is isolated by assigning a high weight to all its connected links, preventing it from forwarding

transit traffic. Only traffic that is destined for or originating from the isolated node will use these

restricted links.

ARGUMENTS:

Graph Definitions and Multiple Routing Configurations (MRC)

A graph is represented as G = (N, A), where N is the set of nodes and A is the set of directed links

(arcs).

Key Notations

• Ci – A graph configuration with link weights specific to configuration i.

• Si – The set of isolated nodes in configuration Ci.

• Bi – The backbone of configuration Ci.

• A(u) – The set of outgoing links from node u.

• (u, v) – A directed link from node u to node v.

• pi(u, v) – A shortest path between nodes u and v in Ci.

• N(p) – The set of nodes on path p.

• A(p) – The set of links on path p.

• wi(u, v) – The weight of link (u, v) in configuration Ci.

• wi(p) – The total weight of all links in path p under configuration Ci.

• wr – The weight assigned to a restricted link.

• n – The number of configurations to generate (algorithm input).

Configuration Definition

A configuration Ci is an ordered pair (G, wi), where wi is a function that assigns an integer

weight wi(a) to each link a ∈ A. The function follows the rule:

wi : A → {1, ..., wmax, wr, ∞}, where:

• C0 (normal configuration) assigns "normal" weights to all links: w0(a) ∈ {1, ..., wmax}.

• Ci (backup configurations, i > 0) modifies link weights to prevent certain links and nodes from

forwarding transit traffic while still ensuring connectivity for active nodes.

Traffic Regulation in Backup Configurations

To control traffic flow in backup configurations, certain links are assigned high weights:

• A link a ∈ A is isolated in Ci if wi(a) = ∞.

• A link a ∈ A is restricted in Ci if wi(a) = wr.

• Isolated links do not carry any traffic.

• Restricted links are used to prevent nodes from forwarding traffic. To isolate a node, all its

attached links must be assigned at least the restricted weight wr.

• However, a node must not be completely isolated in all configurations to ensure it remains

reachable.

The set of isolated nodes in Ci is denoted Si, while the set of non-isolated nodes is Si = N \ Si.

Node Isolation Condition

A node u ∈ N is considered isolated in Ci if:

∀(u,v)∈A,wi(u,v)≥wr

and at least one link satisfies:

∃(u,v)∈A,wi(u,v)=wr

1

2

6

3

4

5

163 Vol.20, No.01(II), January-June: 2025

 163

Rules for Isolated and Restricted Links

For all links (u, v) ∈ A:

• If wi(u, v) = wr, then the link connects an isolated node to a non-isolated node:

 (u∈Si∧ u ∈Si)or(v∈Si∧u∈Si)

• If wi(u, v) = ∞, then at least one of the nodes must be isolated:

u ∈ Si or u ∈ Si

This meansRestricted links always connect an isolated node to a non-isolated node.Isolated links

either connect an isolated node to a non-isolated node or connect two isolated nodes.A link is

always isolated in the same configuration as at least one of its attached nodes.

Algorithm:

The algorithm can be implemented either within a network management system or directly in the

routers. As long as all routers have a consistent view of the network topology, they will compute the

same set of backup configurations.

Description:

Algorithm 1 iterates through all the nodes in the network topology, attempting to isolate each node

one at a time. A link is isolated during the same iteration as one of its connected nodes. The algorithm

terminates when all nodes and links are isolated in exactly one configuration, or when a node that

cannot be isolated is encountered.

a) Main Loop:

Initially, n backup configurations are created as copies of the normal configuration. Two queues are

initialized: a queue of nodes (Qn) and a queue of links (Qa). The Qn contains all nodes in an arbitrary

order, while the Qa starts empty but will eventually contain all links in the network. The method starts

by returning and removing the first item from the node queue.

When a node u is being isolated in a backup configuration Ci, the algorithm first verifies that isolating

the node will not disconnect the backbone Bi, according to the connectivity definition. The method

connected (line 13) tests if each of u's neighbors can still reach each other without passing through u,

an isolated node, or an isolated link in configuration Ci. If the connectivity test passes, the function

isolate is called, which tries to find a valid assignment of isolated and restricted links for node u.

If the isolation is successful, the modified configuration is returned, and the changes are committed

(line 16). If isolation is not successful, no changes are made to configuration Ci.

Algorithm 1: Creating backup configurations.

1 for i ∈ {1 . . . n} do

2 Ci ←(G,w0)

3 Si ←∅

4 Bi ←Ci

5 end

6 Qn ←N

7 Qa←∅

8 i ←1

9 while Qn 6= ∅do

10 u ←first (Qn)

11 j ←i

12 repeat

13 if connected(Bi \ ({u},A(u))) then

14 Ctmp←isolate(Ci, u)

15 if Ctmp6= null then

16 Ci ←Ctmp

17 Si ←Si ∪ {u}

18 Bi ←Bi \ ({u},A(u))

19 i ←(i mod n) + 1

until u ∈Si 20 or i=j

if u /∈Si 21 then

164 Vol.20, No.01(II), January-June: 2025

 164

22 Give up and abort

23 end

If node u is successfully isolated, the algorithm proceeds to isolate the next node. If isolation of u fails

in one configuration, the algorithm continues trying to isolate u across all n configurations (line 20).

If u cannot be isolated in any configuration after all attempts, the algorithm terminates with an

unsuccessful result (line 22), indicating that a valid set of configurations with cardinality n cannot be

built.

b) Isolating Links:

In addition to isolating node u, the algorithm attempts to isolate as many of its attached links as

possible. It goes through the links A(u) attached to u (lines 2-3 in function isolate). An important

invariant in the algorithm is that, at line 1, all links in Qa are attached to node u. The node v, which is

at the other end of each link, may or may not be isolated in any given configuration (line 4).

This step ensures that the isolating of links is synchronized with the node isolation process, maintaining

network connectivity where necessary and ensuring no invalid configurations are created.

Output:

We demonstrate that the successful execution of Algorithm 1 results in a complete set of valid backup

configurations.

Proposition:

If Algorithm 1 terminates successfully, the generated backup configurations will adhere to the

conditions (2) and (3).

Proof:

Links are assigned weights wr (restricted) or ∞ (isolated) only during the isolation of one of their

attached nodes, ensuring that condition (3) is met. For restricted links, condition (2) requires that only

one of the attached nodes is isolated. This invariant is maintained in line 7 in the isolate function,

where it is specified that if a node attached to a restricted link is isolated, the link itself must also be

isolated. Therefore, it is impossible to isolate two neighbouring nodes without also isolating their

connecting link.

Termination:

The algorithm iterates through all nodes, attempting to isolate each in one of the backup configurations.

It will always terminate, either with a successful result or without success. If a node cannot be isolated

in any configuration, the algorithm terminates unsuccessfully. However, the algorithm is designed so

that any bi-connected topology will always terminate successfully, provided the number of

configurations allowed is sufficiently high.

STEP 2: LOCAL FORWARDING PROCESS:

Given a sufficiently large n, the algorithm will generate a complete set of valid backup configurations.

Let C(u) represent the backup configuration where node u is isolated, i.e., C(u) = Ci ⇔ u ∈ Si.

Similarly, let C(u, v) denote the backup configuration where the link (u, v) is isolated, i.e., C(u, v) =

Ci ⇔wi(u, v) = ∞. Assuming that d is the destination (egress) in the local network domain, we can

analyze two cases based on the value of v:

1. Case 1: If v ≠ d:In this case, forwarding can be done in configuration C(v), where both node

v and the link (u, v) are avoided.

2. Case 2: If v = d:When v is the destination, the challenge is to handle the failure of the link (u,

v) while ensuring that node v is still operational. The strategy is to forward the packet to v via

a path that bypasses the failed link (u, v).

Additionally, any packets that have already changed configurations (i.e., their configuration ID is

different from the one used in C₀) and encounter a failed component on their forwarding path must be

discarded. This prevents packet loops, even if node d itself fails.

Proposition:

Node u selects configuration Ci such that v ∉N(pi(u, d)), if v ≠ d.

Proof:

Node u selects C(v) in step 2. Since node v is isolated in C(v), it will not appear in the shortest path

pi(u, d), as per the conditions outlined in the proposition above.

165 Vol.20, No.01(II), January-June: 2025

 165

PERFORMANCE EVALUATION:

MRC requires routers to store additional routing configurations, and the amount of state required is

directly tied to the number of backup configurations. Since routing in a backup configuration is

restricted, MRC may provide backup paths that are longer than the optimal paths. These longer paths

can increase the overall network load and end-to-end delay.

In contrast, full, global IGP re-convergence recalculates the shortest paths in the network after the

failed component is removed. We use this global re-convergence performance as a benchmark to assess

how closely MRC can match it. It is important to note that MRC achieves its performance immediately

after detecting a failure, whereas IP re-convergence can take several seconds to complete.

CONCLUSION:

We have introduced Multiple Routing Configurations (MRC) as a method for achieving rapid recovery

in IP networks. MRC enables routers to use preconfigured backup routing configurations, allowing

them to reroute traffic without relying on the failed component. It ensures recovery from any single

node or link failure in a bi-connected network.

By precomputing backup configurations and relying solely on locally available information, MRC

responds immediately upon detecting a failure. It does not require identifying whether the failure is

due to a node or link disruption, as it applies a structured link weight assignment to manage traffic

redirection.

The effectiveness of MRC has been evaluated through simulations, demonstrating that it provides fast

recovery with minimal impact on network performance.

REFERENCES:

1. P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-second IGP convergence

in large IP networks,” ACM SIGCOMM Computer Communication Review, vol. 35, no. 2, pp. 35 –

44, July 2005.

2.Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah, “Failure inferencing based fast

rerouting for handling transient link and node failures,” in Proceedings of IEEE Global Internet,

Mar. 2005.

3. P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “Local restoration algorithms for link-state routing

protocols,” in Proceedings of IEEE International Conference on Computer Communications and

Networks, Oct. 1999.

